This question was uploaded on 16/01/22 on social media accounts.
Solution:
Given:
\[\color{red} {x^3=4-2x}\]
Now,
\[\color{blue} {x^{10}=x(\color{red}{x^3})^3=x(\color{red}{4-2x})^3}\]
\[\Rightarrow\color{blue} {x^{10}=-8x^4+48x^3-96x^2+64x}\]
\[\Rightarrow\color{blue} {x^{10}=-8x(\color{red}{x^3})+48(\color{red}{x^3})-96x^2+64x}\]
\[\Rightarrow\color{blue} {x^{10}=-8x(\color{red}{4-2x})+48(\color{red}{4-2x})-96x^2+64x}\]
\[\Rightarrow\color{blue} {x^{10}=-80x^2-64x+192}\]
\[\Rightarrow\color{blue} {x^{10}=-16x(5x+4)+192}\]
Now, after putting this value in second equation:
\[\color{blue} {-\color{fuchsia}{16x(5x+4)}+192+\color{fuchsia}{16x(5x+4)}=192}\]